Pseudo-localisation of Singular Integrals in L

نویسندگان

  • TUOMAS P. HYTÖNEN
  • T. P. HYTÖNEN
چکیده

Abstract. As a step in developing a non-commutative Calderón–Zygmund theory, J. Parcet (J. Funct. Anal., 2009) established a new pseudo-localisation principle for classical singular integrals, showing that Tf has small L norm outside a set which only depends on f ∈ L but not on the arbitrary normalised Calderón–Zygmund operator T . Parcet also asked if a similar result holds true in L for p ∈ (1,∞). This is answered in the affirmative in the present paper. The proof, which is based on martingale techniques, even somewhat improves on the original L result.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A General New Algorithm for Regulaization of Singular Integrals in Three-Dimensional Boundary Elemnts

In this paper an algorithm is presented for the regularization of singular integrals with any degrees of singularity, which may be employed in all three-dimensional problems analyzed by Boundary Elements. The integrals in Boundary Integrals Equations are inherently singular. For example, one can mention the integrals confronted in potential problems to evaluate the flow or the gradient of the f...

متن کامل

A General New Algorithm for Regulaization of Singular Integrals in Three-Dimensional Boundary Elemnts

In this paper an algorithm is presented for the regularization of singular integrals with any degrees of singularity, which may be employed in all three-dimensional problems analyzed by Boundary Elements. The integrals in Boundary Integrals Equations are inherently singular. For example, one can mention the integrals confronted in potential problems to evaluate the flow or the gradient of the f...

متن کامل

Estimates for Singular Integrals along Surfaces of Revolution

We prove certain L estimates (1 < p <∞) for non-isotropic singular integrals along surfaces of revolution. The singular integrals are defined by rough kernels. As an application we obtain L boundedness of the singular integrals under a sharp size condition on their kernels. We also prove a certain estimate for a trigonometric integral, which is useful in studying non-isotropic singular integrals.

متن کامل

L Bounds for Singular Integrals and Maximal Singular Integrals with Rough Kernels

Convolution type Calderón-Zygmund singular integral operators with rough kernels p.v. Ω(x)/|x| are studied. A condition on Ω implying that the corresponding singular integrals and maximal singular integrals map L → L for 1 < p < ∞ is obtained. This condition is shown to be different from the condition Ω ∈ H1(Sn−1).

متن کامل

Lp BOUNDS FOR SINGULAR INTEGRALS AND MAXIMAL SINGULAR

Convolution type Calderr on-Zygmund singular integral operators with rough kernels p.v. (x)=jxj n are studied. A condition on implying that the corresponding singular integrals and maximal singular integrals map L p ! L p for 1 < p < 1 is obtained. This condition is shown to be diierent from the condition 2 H 1 (S n?1).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009